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SAMPLE DERIVATIONS IN PROPOSITIONAL LOGIC
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STRATEGY 1: Whenever you are trying to construct a derivation of a formula of the form
@ — 1, the most natural thing to do is to assume ¢, and then attempt to derive ). Once
you have derived 1) from the assumption ¢, you can finally derive ¢ — v by applying — I
which also allows you to cancel the initial assumption .

This strategy applies at any stage of the derivation process. You might need to derive a
formula of the form ¢ — ¢ as the very last formula of your derivation, or you might need
to derive a formula of the form ¢ — 4 at the beginning or in the middle of your derivation.
In either case, STRATEGY 1 applies.

STRATEGY 2: Often it is useful to work backwards. Ask yourself, which rule will allow me
to derive the formula I need to derive? If the formula is of the form ¢ — 1, the rule to use
is — I; see STRATEGY 1. If the formula is a conjunction of the form ¢ A 1), then you should
try to derive each conjunct independently, and then apply Al so that you can derive ¢ A 1.
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NOTATIONAL CONVENTION: Do not forget our notational convention which says that
formulas of the form —¢ are abbreviations of formulas of the form ¢ — 1. You should
read the above derivations which contain formulas of the form —¢ while having in mind

our notational convention.

STRATEGY 3: Whenever you want to derive a negated formula of the form —¢p, try to
assume ¢ and then derive L. By applying — I, you'll then be able to derive ¢ — 1 and
cancel the assumption ¢. This is not much different from STRATEGY 1, although here you
should keep in mind that ¢ — | is—by our notation convention—the same as —.
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